II B.Tech - II Semester - Regular / Supplementary Examinations MAY - 2023

ANALOG CIRCUITS
 (ELECTRONICS \& COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	Give the block diagram of a general feedback amplifier. State the functions of each block.	L2	CO1	7 M
	b)	Draw equivalent circuit of voltage shunt feedback amplifier and derive Transresistance, input resistance and output resistance.	L4	CO4	7 M
OR					
2	a)	Explain current shunt feedback amplifier with block diagram. Draw its equivalent circuit and derive trans-conductance, input resistance and output resistance.	L4	CO 2	9 M
	b)	A Voltage series negative feedback amplifier has voltage gain without feedback of $A=500$, input resistance $R_{i}=3 \mathrm{~K} \Omega$, output	L3	CO 2	5 M

		resistance $\mathrm{R}_{0}=20 \mathrm{~K} \Omega$ and feedback ratio $\beta=0.01$. Calculate voltage gain A_{f}, input resistance $R_{\text {if }}$ and output resistance $R_{\text {of }}$ of the amplifier with feedback.			
UNIT-II					
3	a)	Explain the operation of inverting and noninverting amplifier.	L2	CO1	8 M
	b)	The two input terminals of an op-amp are connected to voltage signals $745 \mu \mathrm{~V}$ and $740 \mu \mathrm{~V}$ respectively. The gain of the opamp in differential mode is 5×10^{5} and CMRR is 80 dB . Calculate the output voltage and \% error due to common mode.	L3	CO3	6 M
OR					
4	a)	Draw the adder, subtractor circuits using opamp and discuss the operation.	L2	CO1	8 M
	b)	Illustrate the operation of an ideal differentiator.	L3	CO3	6 M
UNIT-III					
5	a)	Explain working of RC phase shift oscillator with neat diagram.	L2	CO1	7 M
	b)	Derive Oscillator frequency and feedback factor of colpitts Oscillator.	L4	CO4	7 M
OR					
6	a)	Explain working of class A amplifier with neat diagram.	L3	CO2	7 M

	b)	Derive oscillator frequency f_{o} and feedback factor β of wien bridge oscillator with neat diagram.	L4	CO4	7 M
UNIT-IV					
7	a)	Draw circuit diagram of an astable multivibrator using IC 555 timer and explain its working.	L3	CO3	7 M
	b)	Draw and explain operation of high pass filter.	L2	CO1	7 M
OR					
8	a)	Draw IC 555 timer pin diagram and explain each pin.	L2	CO1	7 M
	b)	Draw and explain operation of low pass filter.	L3	CO3	7 M
UNIT-V					
9	a)	Explain the working of binary weighted resistor type D/A converter.	L3	CO3	7 M
	b)	Explain about flash (parallel comparator) type A/D converter.	L3	CO3	7 M
OR					
10	a)	Explain the working of R-2R ladder type D/A converter.	L3	CO3	7 M
	b)	Explain counter type A/D converter.	L2	CO1	7 M

