Code: 20EC3401

II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2023

ANALOG CIRCUITS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks
		UNIT-I			
1	a)	Give the block diagram of a general	L2	CO1	7 M
		feedback amplifier. State the functions of			
		each block.			
	b)	Draw equivalent circuit of voltage shunt	L4	CO4	7 M
		feedback amplifier and derive Trans-			
		resistance, input resistance and output			
		resistance.			
OR					
2	a)	Explain current shunt feedback amplifier	L4	CO2	9 M
		with block diagram. Draw its equivalent			
		circuit and derive trans-conductance, input			
		resistance and output resistance.			
	b)	A Voltage series negative feedback	L3	CO2	5 M
		amplifier has voltage gain without feedback			
		of A=500, input resistance $R_i = 3K\Omega$, output			

		resistance $R_0=20K\Omega$ and feedback ratio						
		β =0.01. Calculate voltage gain A_f , input						
		resistance R _{if} and output resistance R _{of} of						
		the amplifier with feedback.						
UNIT-II								
3	a)	Explain the operation of inverting and non-	L2	CO1	8 M			
		inverting amplifier.						
	b)	The two input terminals of an op-amp are	L3	CO3	6 M			
		connected to voltage signals 745 µV and						
		740 µV respectively. The gain of the op-						
		amp in differential mode is $5x10^5$ and						
		CMRR is 80dB. Calculate the output						
		voltage and % error due to common mode.						
		OR						
4	a)	Draw the adder, subtractor circuits using op-	L2	CO1	8 M			
		amp and discuss the operation.						
	b)	Illustrate the operation of an ideal	L3	CO3	6 M			
		differentiator.						
	1 .	UNIT-III		T T				
5	a)	Explain working of RC phase shift oscillator	L2	CO1	7 M			
		with neat diagram.						
	b)	Derive Oscillator frequency and feedback	L4	CO4	7 M			
		factor of colpitts Oscillator.						
	OR							
6	a)	Explain working of class A amplifier with	L3	CO2	7 M			
		neat diagram.						

	1. \	D C. 1 C. 11 1	Τ 1	004	7 1 1				
	b)	Derive oscillator frequency f _o and feedback	L4	CO4	7 M				
		factor β of wien bridge oscillator with neat							
		diagram.							
UNIT-IV									
7	a)	Draw circuit diagram of an astable multi-	L3	CO3	7 M				
		vibrator using IC 555 timer and explain its							
		working.							
	b)	Draw and explain operation of high pass	L2	CO1	7 M				
		filter.							
	ı	OR		,					
8	a)	Draw IC 555 timer pin diagram and explain	L2	CO1	7 M				
		each pin.							
	b)	Draw and explain operation of low pass	L3	CO3	7 M				
		filter.							
	I.	<u>'</u>							
		UNIT-V							
9	a)	Explain the working of binary weighted	L3	CO3	7 M				
		resistor type D/A converter.							
	b)	Explain about flash (parallel comparator)	L3	CO3	7 M				
		type A/D converter.							
OR									
10	a)	Explain the working of R-2R ladder type	L3	CO3	7 M				
		D/A converter.							
	b)	Explain counter type A/D converter.	L2	CO1	7 M				
	l								